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A Comparison of DHW Algorithm for Temperature
Distribution Calculation with Fourier’s Algorithm for
Transmission of Heat between Discrete Bodies

Jozef Gembarovic1,2 and Jozef Gembarovic, Jr.3

In this article, our damped-heat wave (DHW) algorithm for the calculation of
temperature distribution in a homogeneous finite medium is compared with
Fourier’s algorithm for transmission of heat between discrete bodies.
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1. INTRODUCTION

Joseph Fourier’s work [1] in formulating the heat conduction in terms of
a partial differential equation and developing the methods for solving the
equation is well known and recognized as one of the biggest scientific
achievements of mankind. Less known is his first attempt to solve the
problem of heat transmission between discrete bodies.

Fourier started work on heat conduction sometime between 1802 and
1804 [2]. Inspired by the Laplacian philosophy of action at a distance, he
followed an 18th-century technique of developing a discrete model of the
continuous phenomenon and initially formulated the heat conduction as
an n-body problem. He studied and found the solutions only to the two
examples—straight line and circular arrangement of N discrete bodies—
and then he stopped. Although he never even mentioned that there was a
difficulty, he probably reached the point from which only the investigation
of special cases was possible [3]. Fourier abandoned the n-body approach
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around 1804, and probably inspired by Biot’s work [4], he started to work
on a theory of heat conduction in continuous bodies.

Although his first attempt to describe heat transfer using discrete bod-
ies is regarded as a dead end or a blind alley, Fourier never failed to
describe it in detail in his 1805 Draft Paper, through his 1807 Essay [5],
to the Prize Paper of 1811, and the book Théorie Analytique de la Chaleur
[6]. As a result of Fourier’s lively historical sense, the “Communication of
Heat Between Discrete Bodies” is the second largest section of Fourier’s
book [7] as a monument to his earliest research in the heat conduction
problem [8].

Recently, we have described a very simple algorithm for calculation
of the temperature distribution in finite one-dimensional bodies [9,10]. We
named it the damped-heat-wave (DHW) algorithm, and it is similar (but
not the same) to the above-mentioned Fourier’s algorithm for transmission
of heat between discrete bodies. In Sect. 2 of this article, we will describe
both the Fourier’s and the DHW algorithms. In case of the earlier, we
tried to follow an original description found in Fourier’s book [7], adding
only our remarks and formulae for a length representation of the temper-
atures. In Section 3, the two algorithms will be compared using a simple
(but practical) boundary value problem.

2. DESCRIPTION OF ALGORITHMS

2.1. Fourier’s Algorithm

Fourier first considered [11] two rectangular bodies of equal mass m,
cross-section area A, and thickness �l of the same material with the same
specific heat c, density ρ, and perfect thermal conductivity at different
temperatures a and b. He imagined the transmission of heat between the
bodies by means of an ideal shuttle mechanism consisting of an infinitesi-
mally small section of thickness δ and mass ω which moves to and fro in
a fixed time �t between the two masses.

If these two bodies are placed in contact, the temperature in each
would suddenly become equal to the mean temperature 1

2 (a + b). Two
masses (see Fig. 1) are separated by a very small interval. A thin layer
ω of the first is detached so as to be joined to the second, and then it
returns to the first immediately after the contact. Continuing thus to be
transferred alternately, and at equal small time intervals, the interchanged
layer causes the heat of the hotter body to pass gradually into that which
is less heated. There are no heat losses from the bodies to ambient. The
quantity of heat contained in the thin layer is suddenly added to that of
the body with which it is in contact, and a common temperature results
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Fig. 1. Heat transfer between two discrete bodies.

which is equal to the quotient of the sum of the quantities of heat divided
by the sum of the masses multiplied by the specific heat. Let ω be the
mass of the small layer which is separated from the hotter body, whose
temperature is a; let θ and ϑ be the variable temperatures which corre-
spond to the time t , and whose initial values are a and b. When the layer
ω is separated from the mass m which becomes m −ω, it has the temper-
ature θ , and as soon as it touches the second body with the temperature
ϑ , it assumes at the same time with that body a temperature equal to

ϑmc + θωc

mc +ωc
= ϑm + θω

m +ω . (1)

The layer ω, retaining the last temperature, returns to the first body, whose
mass is m −ω and temperature is θ . The temperature after the second con-
tact is

θ(m −ω)c + ((ϑm + θω)/(m +ω))ωc

mc
= θm +ϑω

m +ω . (2)

The variable temperatures θ and ϑ become, after the interval �t ,

θ − (θ −ϑ) ω
m

and ϑ+ (θ −ϑ) ω
m
. (3)

For the differences we have

�θ =−(θ −ϑ) ω
m

and �ϑ= (θ −ϑ) ω
m
. (4)

The quantity of heat received in one instant by the second mass is
equal to the quantity of the heat lost by the first mass. The quantity of
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Fig. 2. Temperature distribution in a finite body calculated using the DHW algorithm for
N = 20, µ= 0.2, and �Fo = 5 × 10−4 at different times Fo = 0.025, 0.05, 0.075, 0.15, 2.0.
Exact solutions calculated using Eq. (20) are depicted as solid lines.

the heat is, if we assume that all other things being equal, proportional to
the actual difference of temperature of the two bodies.

While m =�l Aρ and ω= δAρ, the masses m and ω can be replaced
by �l and δ, respectively. (We will call this substitution a length represen-
tation.) Equation (4) is now

�θ =−(θ −ϑ) δ
�l

and �ϑ= (θ −ϑ) δ
�l
. (5)

The term ω (or δ) represents the velocity of transmission, or the facility
with which the heat passes from one of the bodies into the other. Fourier
[12] called it the reciprocal conducibility. He integrated the temperatures of
Eq. (4) and found a formula for the transient temperature of the system.



Comparison of DHW Algorithm with Fourier’s Algorithm 895

0.0 0.2 0.4 0.6 0.8
-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.0 0.2 0.4 0.6 0.8 1.0

E

X

DHW

N = 20,  µ = 0.2

X

 Fo=0.025
 Fo=0.05
 Fo=0.075
 Fo=0.15
 Fo=0.2

Fourier

Fig. 3. Error distribution for the DHW and Fourier’s algorithm (both for N = 20, µ= 0.2,
and �Fo =5×10−4) at different times Fo.

In a general case of N separate equal masses arranged in a straight
line, Fourier considered [13] transmission of heat by the same shuttle
mechanism as in the case of two bodies only. Infinitesimally thin layers ω
move to and fro between successive bodies, all at once, so the situation for
inner bodies is not the same as for the two bodies at the boundaries.

Let α,β, γ, . . . ,ψ , be the variable temperatures which correspond to
the same time t , and which have succeeded to the initial values a,b, c, . . . .
When the layers ω have been separated from the first masses and put in
contact with the neighboring masses, the temperatures become

α(m −ω)
m −ω ,

β(m −ω)+αω
m

, . . . ,
mψ+χω

m +ω ; (6)

or

α, β+ (α−β) ω
m
, . . . , ψ+ (χ −ψ) ω

m +ω . (7)

When the layers ω have returned to their former places, the new tempera-
tures (after the instant dt) are

α+ (β−α) ω
m
, β+ (α−2β+γ ) ω

m
, . . . , ψ+ (χ −ψ)ω

m
, (8)



896 Gembarovic and Gembarovic, Jr.

0.0 0.2 0.4 0.6 0.8
-0.0150

-0.0125

-0.0100

-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0 0.2 0.4 0.6 0.8 1.0

E

X

DHW

N = 20,  µ = 0.01

X

 Fo=0.025
 Fo=0.05
 Fo=0.075
 Fo=0.15
 Fo=0.2

Fourier

Fig. 4. Error distribution for the DHW and Fourier’s algorithm (both for N =20, µ=0.01,
and �Fo =2.5×10−5) at different times Fo =0.025, 0.05, 0.075, 0.15, 2.0.

where the terms with ω2 are neglected.
If the masses ω and m in Eq. (8) are replaced with the layer’s thick-

nesses δ and �l, respectively, the temperatures finally become

α+ (β−α) δ
�l
, β+ (α−2β+γ ) δ

�l
, . . . , ψ+ (χ −ψ) δ

�l
. (9)

Finally, Fourier considered N separate equal masses to be placed at
equal distances on the circumference of a circle [14]. Heat is transferred by
the same shuttle mechanism between the bodies as in the case of N sep-
arate equal masses arranged in a line, but the masses are now all consid-
ered to be inner. Transient temperatures α,β, . . . ,ψ can now be expressed
in symmetrical forms,

α+ (ψ−2α+β) ω
m
, β+ (α−2β+γ ) ω

m
, . . . ,

ψ+ (χ −2ψ+α) ω
m
, (10)
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Fig. 5. Error distribution for the DHW and Fourier’s algorithm (both for N =40, µ=0.05,
and �Fo =3.125×10−5) at different times Fo =0.025, 0.05, 0.075, 0.15, 2.0.

or in the length representation,

α+ (ψ−2α+β) δ
�l
, β+ (α−2β+γ ) δ

�l
, . . . ,ψ

+(χ −2ψ+α) δ
�l
. (11)

After an ingenious and original set of manipulations, Fourier found an
analytical solution for the temperature of the system and showed that the
formula for the discrete bodies arranged in a circle is equal for N →∞ to
the one he found solving the partial differential equation of heat conduc-
tion. Then he remarked [15]: “It is not necessary to resort to analysis of
partial differential equations in order to obtain the general equation which
expresses the movement of heat in a ring. The problem may be solved for
a definite number of bodies, and that number may be then supposed infi-
nite. This method has a clearness peculiar to itself, and guided our first
researches.”
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Fig. 6. Temperature distribution in a finite body calculated using the DHW and Fourier’s
algorithm for N =20, µ=0.5, and �Fo=1.25×10−3 at five different times Fo=0.025, 0.05,
0.075, 0.15, 2.0. Exact solutions calculated using Eq. (20) are depicted as solid lines.

2.2. DHW Algorithm

In the DHW algorithm for calculation of a temperature distribution
[9], a finite homogeneous medium of thickness L is divided into N equal
slabs of thickness �l = L/N . These slabs are replaced by a perfect conduc-
tor of the same heat capacity separated by the thermal resistance �l/λ,
(where λ is the thermal conductivity of the medium), so the temperature
within a slab at any given time is constant. Heat propagates through the
medium due to a temperature difference between the slabs. A certain por-
tion (given by the inner heat transfer coefficient ξ ) of the excessive heat
energy moves from one slab to the next one, lowering thus the tempera-
ture difference between the two neighbor slabs. This redistribution process
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Fig. 7. Error distribution for the DHW algorithm (N =20, µ=0.5, and �Fo=1.25×10−3)
at different times Fo =0.025, 0.05, 0.075, 0.15, 2.0.

(the DHW) starts from the left boundary slab and marches in space from
one pair of slabs to another. When the wave reaches the boundary of the
medium, it bounces back and moves in the opposite direction in a perpet-
ual manner.

Slab temperatures are Ti,m ≡ T (xi , tm), where xi , (i =0,1,2, . . . , N −1)
is a spatial point (middle of the ith slab), and tm = m�t (m = 0,1,2, . . .)
is a discrete time point. The temperature of the boundary slabs is actu-
ally changing only after the heat wave finishes one whole loop; therefore,
the time step �t is equal to one loop time interval. The time step �t is
thus divided into 2N sub-steps. Despite almost trivial simplicity of this
algorithm, the temperature distribution in the medium at time tm+1 as a
function of the temperature distribution at tm can be expressed by rather
lengthy and complicated formulae [9]:
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Fig. 8. Temperature distribution in a finite body calculated using the DHW algorithm for
N = 20, µ= 2.5, and �Fo = 6.25 × 10−3 at five different times Fo = 0.025, 0.05, 0.075, 0.15,
2.0. Exact solutions calculated using Eq. (20) are depicted as solid lines.

T0,m+1 =
[

2
1+ ξ2N−1

1+ ξ −1
]

T0,m

+2
1− ξ
1+ ξ

N−1∑
j=1

ξ j
(

1+ ξ2(N− j)−1
)

Tj,m,

Ti,m+1 = 2
1− ξ
1+ ξ

(
1+ ξ2(N−i)−3

) i−1∑
j=0

ξ j (1− ξ) j Tj,m

+
[
(1− ξ)2

(
2

1+ ξ2(N−i)−3

1+ ξ −1
)

+ ξ2
]

Ti,m
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Fig. 9. Error distribution for the DHW algorithm for N=20, µ=2.5, and �Fo=6.25×10−3

at five different times Fo =0.025, 0.05, 0.075, 0.15, 2.0.

+2
(1− ξ)2

1+ ξ
N−i−1∑

j=0

ξ j
(

1+ ξ2(N−i− j)+1
)

Tj+i+1,m,

i = 1,2, . . . , N −1. (12)

The inner heat transfer coefficient ξ is a dimensionless quantity given by
[10]

ξ = µ

µ+2
, (13)

where

µ= α�t

(�l)2
, (14)
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is a dimensionless quantity called the Fourier number for one slab, or sim-
ply the mesh ratio, and α is the thermal diffusivity of the slab material.
As can be seen from Eq. (12), the new temperature of a particular slab at
the time tm+1 depends not only on temperatures of its neighboring slabs
at time tm , but also on the temperatures of all slabs in the medium. The
influence of more distant slabs is diminishing exponentially.

3. COMPARISON

For N > 2 bodies arranged in a straight line, the Fourier’s algorithm
principally differs from the DHW algorithm. In the DHW algorithm,
the wave of redistribution is marching through the medium, consecutively
changing the temperatures of neighboring slices, two at the time, while in
the Fourier’s algorithm, (N −1) thin layers ω move to and fro between the
successive bodies, all at once. Nevertheless, from the heat transfer point of
view, the two algorithms are identical for N = 2. From Eq. (5), it follows
that the amount of heat transferred by an infinitely small layer δ between
the two bodies in �t is �l Aρc�θ =−(θ −ϑ)δAρc. From the comparison
with the Fourier law,

−(θ −ϑ)δAρc =−λ(θ −ϑ)
�l

A�t, (15)

it follows that

δ

�l
= λ�t

ρc�l2
= α�t

�l2
=µ. (16)

If the terms (δ/�l) in Eq. (9) are replaced with the mesh ratio µ, the
temperatures of N bodies arranged in a straight line become finally

α+ (β−α)µ, β+ (α−2β+γ )µ, . . . , ψ+ (χ −ψ)µ, (17)

or, in the notation similar to the DHW algorithm,

T0,m+1 = T0,m +µ(T1,m − T0,m),

Ti,m+1 = Ti,m +µ(Ti−1,m −2Ti,m + Ti+1,m), i =1,2,3, . . . , N −2,
TN−1,m+1 = TN−1,m +µ(TN−2,m − TN−1,m).

(18)

We consider a simple model problem for the heat flow in a finite
homogeneous unchanging medium of thickness L, with no heat source.
The medium is adiabatically insulated and the initial temperature distribu-
tion is given by the Dirac delta function δ(x, t). The problem for x ∈[0, L]
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and t �0 is

ut = αuxx , t �0, 0� x � L ,
ux (0, t) = ux (L , t)=0, t �0,
u(x,0) = δ(x, t), 0� x � L .

(19)

The analytical solution of the problem, Eq. (19), is given by

u(X, Fo) = 1√
πFo

∞∑
n=0

(
exp

[−(2n + X)2

4Fo

]

+exp
[−(2n +2− X)2

4Fo

])
, (20)

where X and Fo are the dimensionless x-coordinate and the Fourier
number, respectively, defined as

X = x

L
, Fo = αt

L2
. (21)

To approximate the model, Eq. (19), by both the DHW and Fourier algo-
rithms, the medium will be divided into N equal slabs of thickness �l =
L/N , with nodal points in the middle of the slabs. The dimensionless
nodal point positions,

Xi = xi

L
, i =0,1,2, . . . , N −1, (22)

and the dimensionless time,

Fom =m�Fo =m
α�t

L2
, m =0,1,2, . . . , (23)

will be used in graphs. The initial temperature of the first slab will be
numerically equal to N , while the rest of the slabs will be at zero temper-
ature at Fo =0.

The temperature distributions for five different Fo calculated using
the DHW algorithm for N =20, µ=0.2, and �Fo=5.0×10−4 are shown
in Fig. 2 along with the exact solution in Eq. (20). Errors, Ei,m , defined
as the difference between the approximative and exact temperatures Ei,m =
Ti,m − u(Xi , Fom), for N = 20, µ = 0.2, and �Fo = 5.0 × 10−4 at Fo =
0.025, 0.05, 0.075, 0.15, 2.0, are shown in Fig. 3. Both algorithms clearly
give quite accurate results. The DHW algorithm is more precise than the
Fourier algorithm, especially for slabs close to the front of the medium.

If the same calculations are carried out with a refined time step, then
the Fourier algorithm results are closer to those of the DHW. The errors
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for N =20, µ=0.01, and �Fo=2.5×10−5 are shown in Fig. 4. The time
step refinement has no significant effect on the DHW algorithm.

On the contrary, an increase in the number of divisions N has a pro-
found effect on the precision of both algorithms. The error distributions
for both algorithms are shown in Fig. 5 for N =40, µ=0.05, and �Fo =
3.125×10−5 at Fo=0.025, 0.05, 0.075, 0.15, 2.0. The errors are now about
four times less than those from Fig. 4.

In modern numerical analysis, the system of Eq. (18) represents an
explicit finite difference (EFD) scheme, although a pattern of grid points
used in today EFD schemes differs from the one used in Fourier’s algo-
rithm. It is a well-known fact [16] that the EFD scheme is not stable for
the mesh ratio µ� 1

2 . From Fig. 6, where two sets of temperature results
calculated with the DHW and Fourier algorithms are shown (both for
N = 20, µ= 0.5, and �Fo = 1.25 × 10−3 at Fo = 0.025, 0.05, 0.075, 0.15,
2.0), it is clearly visible that Fourier’s algorithm is becoming unstable and
the errors E are oscillating. The DHW algorithm’s E values for N = 20,
µ=0.5, and �Fo=1.25×10−3, shown in Fig. 7, are on the contrary still
quite small.

When the DHW imitates diffusion, the upper limit for the inner
transfer coefficient is ξ < 0.5. It follows from Eqs. (13) and (14) that the
upper limit for the mesh ratio in DHW is µ�2. This ‘stability’ criterion
is not as strong as in the case of the EFD scheme, because the time step in
the DHW is actually subdivided (discretized) to 2N sub-steps and oscilla-
tions are effectively dumped. This is illustrated in Figs. 8 and 9, where the
results of approximative temperature calculations using the DHW algo-
rithm and the error distribution, respectively, are shown for N = 20, µ=
2.5, and �Fo=6.25×10−3. With the exception of the first curve for Fo=
0.025, all error values are less than 0.005.

4. CONCLUSION

From the comparison of the DHW algorithm and the Fourier algo-
rithm for transmission of heat between discrete bodies we have found:

• For the same number of divisions N and the same mesh ratio µ, the
DHW algorithm is generally more precise than the Fourier algorithm.

• For the same number of divisions N , the Fourier algorithm results con-
verge to the DHW algorithm results for the mesh ratio µ→0.

• The Fourier algorithm represents the EFD scheme with nodal points in
the middle of equal thickness slabs.
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• The Fourier algorithm is stable for the mesh ratio µ < 1
2 , while the

DHW algorithm is stable for µ<2. Even for µ>2, the DHW algorithm
results are not showing signs of oscillations.

• Both algorithms converge to the exact solution for N →∞ and µ→0.
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6. J. Fourier, Théorie Analytique de la Chaleur (Firmin Didot, Paris, 1822).
7. J. Fourier, Analytical Theory of Heat, Translated with notes of A. Freeman (Dover Pubs.,

New York, 1955), Chap. IV, Sect. 2
8. J. Herivel, Joseph Fourier The Man and The Physicist (Claredon Press, Oxford, 1975),

p. 149.
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